Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection.

Identifieur interne : 000175 ( Main/Exploration ); précédent : 000174; suivant : 000176

mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection.

Auteurs : Nathan Meade [États-Unis] ; Melvin King [États-Unis] ; Joshua Munger [États-Unis] ; Derek Walsh [États-Unis]

Source :

RBID : pubmed:31118254

Descripteurs français

English descriptors

Abstract

Despite producing enormous amounts of cytoplasmic DNA, poxviruses continue to replicate efficiently by deploying an armory of proteins that counter host antiviral responses at multiple levels. Among these, poxvirus protein F17 dysregulates the host kinase mammalian target of rapamycin (mTOR) to prevent the activation of stimulator of interferon genes (STING) expression and impair the production of interferon-stimulated genes (ISGs). However, the host DNA sensor(s) involved and their impact on infection in the absence of F17 remain unknown. Here, we show that cyclic-di-GMP-AMP (cGAMP) synthase (cGAS) is the primary sensor that mediates interferon response factor (IRF) activation and ISG responses to vaccinia virus lacking F17 in both macrophages and lung fibroblasts, although additional sensors also operate in the latter cell type. Despite this, ablation of ISG responses through cGAS or STING knockout did not rescue defects in late-viral-protein production, and the experimental data pointed to other functions of mTOR in this regard. mTOR adjusts both autophagic and protein-synthetic processes to cellular demands. No significant differences in autophagic responses to wild-type or F17 mutant viruses could be detected, with autophagic activity differing across cell types or states and exhibiting no correlations with defects in viral-protein accumulation. In contrast, results using transformed cells or altered growth conditions suggested that late-stage defects in protein accumulation reflect failure of the F17 mutant to deregulate mTOR and stimulate protein production. Finally, rescue approaches suggest that phosphorylation may partition F17's functions as a structural protein and mTOR regulator. Our findings reveal the complex multifunctionality of F17 during infection.IMPORTANCE Poxviruses are large, double-stranded DNA viruses that replicate entirely in the cytoplasm, an unusual act that activates pathogen sensors and innate antiviral responses. In order to replicate, poxviruses therefore encode a wide range of innate immune antagonists that include F17, a protein that dysregulates the kinase mammalian target of rapamycin (mTOR) to suppress interferon-stimulated gene (ISG) responses. However, the host sensor(s) that detects infection in the absence of F17 and its precise contribution to infection remains unknown. Here, we show that the cytosolic DNA sensor cGAS is primarily responsible for activating ISG responses in biologically relevant cell types infected with a poxvirus that does not express F17. However, in line with their expression of ∼100 proteins that act as immune response and ISG antagonists, while F17 helps suppress cGAS-mediated responses, we find that a critical function of its mTOR dysregulation activity is to enhance poxvirus protein production.

DOI: 10.1128/JVI.00784-19
PubMed: 31118254
PubMed Central: PMC6639273


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection.</title>
<author>
<name sortKey="Meade, Nathan" sort="Meade, Nathan" uniqKey="Meade N" first="Nathan" last="Meade">Nathan Meade</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King, Melvin" sort="King, Melvin" uniqKey="King M" first="Melvin" last="King">Melvin King</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Munger, Joshua" sort="Munger, Joshua" uniqKey="Munger J" first="Joshua" last="Munger">Joshua Munger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walsh, Derek" sort="Walsh, Derek" uniqKey="Walsh D" first="Derek" last="Walsh">Derek Walsh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA derek.walsh@northwestern.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31118254</idno>
<idno type="pmid">31118254</idno>
<idno type="doi">10.1128/JVI.00784-19</idno>
<idno type="pmc">PMC6639273</idno>
<idno type="wicri:Area/Main/Corpus">000269</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000269</idno>
<idno type="wicri:Area/Main/Curation">000269</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000269</idno>
<idno type="wicri:Area/Main/Exploration">000269</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection.</title>
<author>
<name sortKey="Meade, Nathan" sort="Meade, Nathan" uniqKey="Meade N" first="Nathan" last="Meade">Nathan Meade</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King, Melvin" sort="King, Melvin" uniqKey="King M" first="Melvin" last="King">Melvin King</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Munger, Joshua" sort="Munger, Joshua" uniqKey="Munger J" first="Joshua" last="Munger">Joshua Munger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walsh, Derek" sort="Walsh, Derek" uniqKey="Walsh D" first="Derek" last="Walsh">Derek Walsh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA derek.walsh@northwestern.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Autophagy (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Chlorocebus aethiops (MeSH)</term>
<term>Down-Regulation (MeSH)</term>
<term>Fibroblasts (immunology)</term>
<term>Fibroblasts (virology)</term>
<term>Host Microbial Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Immune Evasion (MeSH)</term>
<term>Macrophages (immunology)</term>
<term>Macrophages (virology)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Vaccinia virus (growth & development)</term>
<term>Viral Structural Proteins (metabolism)</term>
<term>Virus Replication (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Autophagie (MeSH)</term>
<term>Fibroblastes (immunologie)</term>
<term>Fibroblastes (virologie)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-microbes (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Macrophages (immunologie)</term>
<term>Macrophages (virologie)</term>
<term>Protéines virales structurales (métabolisme)</term>
<term>Régulation négative (MeSH)</term>
<term>Réplication virale (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Virus de la vaccine (croissance et développement)</term>
<term>Échappement immunitaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
<term>Viral Structural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Virus de la vaccine</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Vaccinia virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Fibroblastes</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Fibroblasts</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines virales structurales</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Fibroblastes</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Fibroblasts</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Autophagy</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Down-Regulation</term>
<term>Host Microbial Interactions</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Autophagie</term>
<term>Humains</term>
<term>Interactions hôte-microbes</term>
<term>Lignée cellulaire</term>
<term>Régulation négative</term>
<term>Réplication virale</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite producing enormous amounts of cytoplasmic DNA, poxviruses continue to replicate efficiently by deploying an armory of proteins that counter host antiviral responses at multiple levels. Among these, poxvirus protein F17 dysregulates the host kinase mammalian target of rapamycin (mTOR) to prevent the activation of stimulator of interferon genes (STING) expression and impair the production of interferon-stimulated genes (ISGs). However, the host DNA sensor(s) involved and their impact on infection in the absence of F17 remain unknown. Here, we show that cyclic-di-GMP-AMP (cGAMP) synthase (cGAS) is the primary sensor that mediates interferon response factor (IRF) activation and ISG responses to vaccinia virus lacking F17 in both macrophages and lung fibroblasts, although additional sensors also operate in the latter cell type. Despite this, ablation of ISG responses through cGAS or STING knockout did not rescue defects in late-viral-protein production, and the experimental data pointed to other functions of mTOR in this regard. mTOR adjusts both autophagic and protein-synthetic processes to cellular demands. No significant differences in autophagic responses to wild-type or F17 mutant viruses could be detected, with autophagic activity differing across cell types or states and exhibiting no correlations with defects in viral-protein accumulation. In contrast, results using transformed cells or altered growth conditions suggested that late-stage defects in protein accumulation reflect failure of the F17 mutant to deregulate mTOR and stimulate protein production. Finally, rescue approaches suggest that phosphorylation may partition F17's functions as a structural protein and mTOR regulator. Our findings reveal the complex multifunctionality of F17 during infection.
<b>IMPORTANCE</b>
Poxviruses are large, double-stranded DNA viruses that replicate entirely in the cytoplasm, an unusual act that activates pathogen sensors and innate antiviral responses. In order to replicate, poxviruses therefore encode a wide range of innate immune antagonists that include F17, a protein that dysregulates the kinase mammalian target of rapamycin (mTOR) to suppress interferon-stimulated gene (ISG) responses. However, the host sensor(s) that detects infection in the absence of F17 and its precise contribution to infection remains unknown. Here, we show that the cytosolic DNA sensor cGAS is primarily responsible for activating ISG responses in biologically relevant cell types infected with a poxvirus that does not express F17. However, in line with their expression of ∼100 proteins that act as immune response and ISG antagonists, while F17 helps suppress cGAS-mediated responses, we find that a critical function of its mTOR dysregulation activity is to enhance poxvirus protein production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31118254</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00784-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00784-19</ELocationID>
<Abstract>
<AbstractText>Despite producing enormous amounts of cytoplasmic DNA, poxviruses continue to replicate efficiently by deploying an armory of proteins that counter host antiviral responses at multiple levels. Among these, poxvirus protein F17 dysregulates the host kinase mammalian target of rapamycin (mTOR) to prevent the activation of stimulator of interferon genes (STING) expression and impair the production of interferon-stimulated genes (ISGs). However, the host DNA sensor(s) involved and their impact on infection in the absence of F17 remain unknown. Here, we show that cyclic-di-GMP-AMP (cGAMP) synthase (cGAS) is the primary sensor that mediates interferon response factor (IRF) activation and ISG responses to vaccinia virus lacking F17 in both macrophages and lung fibroblasts, although additional sensors also operate in the latter cell type. Despite this, ablation of ISG responses through cGAS or STING knockout did not rescue defects in late-viral-protein production, and the experimental data pointed to other functions of mTOR in this regard. mTOR adjusts both autophagic and protein-synthetic processes to cellular demands. No significant differences in autophagic responses to wild-type or F17 mutant viruses could be detected, with autophagic activity differing across cell types or states and exhibiting no correlations with defects in viral-protein accumulation. In contrast, results using transformed cells or altered growth conditions suggested that late-stage defects in protein accumulation reflect failure of the F17 mutant to deregulate mTOR and stimulate protein production. Finally, rescue approaches suggest that phosphorylation may partition F17's functions as a structural protein and mTOR regulator. Our findings reveal the complex multifunctionality of F17 during infection.
<b>IMPORTANCE</b>
Poxviruses are large, double-stranded DNA viruses that replicate entirely in the cytoplasm, an unusual act that activates pathogen sensors and innate antiviral responses. In order to replicate, poxviruses therefore encode a wide range of innate immune antagonists that include F17, a protein that dysregulates the kinase mammalian target of rapamycin (mTOR) to suppress interferon-stimulated gene (ISG) responses. However, the host sensor(s) that detects infection in the absence of F17 and its precise contribution to infection remains unknown. Here, we show that the cytosolic DNA sensor cGAS is primarily responsible for activating ISG responses in biologically relevant cell types infected with a poxvirus that does not express F17. However, in line with their expression of ∼100 proteins that act as immune response and ISG antagonists, while F17 helps suppress cGAS-mediated responses, we find that a critical function of its mTOR dysregulation activity is to enhance poxvirus protein production.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meade</LastName>
<ForeName>Nathan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Melvin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Munger</LastName>
<ForeName>Joshua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walsh</LastName>
<ForeName>Derek</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA derek.walsh@northwestern.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI127370</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI127456</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI105330</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015678">Viral Structural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="Y">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076662" MajorTopicYN="Y">Host Microbial Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014616" MajorTopicYN="N">Vaccinia virus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015678" MajorTopicYN="N">Viral Structural Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">F17</Keyword>
<Keyword MajorTopicYN="Y">cGAS</Keyword>
<Keyword MajorTopicYN="Y">interferon-stimulated gene</Keyword>
<Keyword MajorTopicYN="Y">mTOR</Keyword>
<Keyword MajorTopicYN="Y">poxvirus</Keyword>
<Keyword MajorTopicYN="Y">protein synthesis</Keyword>
<Keyword MajorTopicYN="Y">vaccinia virus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31118254</ArticleId>
<ArticleId IdType="pii">JVI.00784-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00784-19</ArticleId>
<ArticleId IdType="pmc">PMC6639273</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cancer Res. 2001 Dec 15;61(24):8751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(10):5251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4825-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Mar 15;18(6):660-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(12):7363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2006 Apr-Jun;2(2):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 May 17;1(3):187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Oct 11;2(4):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Apr;28(8):2648-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 2;455(7213):674-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2008 Oct 17;29(4):538-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1899929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 26;458(7237):514-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Nov;65(11):6101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1920628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 26;106(21):8653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(20):10627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Nov 10;394(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19744687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 5;140(3):313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jul;84(13):6846-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 Nov;11(11):997-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20890285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):853-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 20;469(7330):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 May 19;9(5):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1990 Apr;16(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2161593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 10;332(6035):1317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 10;332(6035):1322-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Oct;85(19):9899-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 25;478(7370):515-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21947006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Dec;7(12):1434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22024753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Mar 30;425(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22280895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Apr;8(4):677-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 02;485(7396):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Jul 19;7(8):1511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22814390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3008-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2012 Dec 18;1:e00047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23251783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):826-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23258412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23258413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Feb 13;13(2):155-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23414756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 9;497(7448):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 May 23;153(5):1094-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 May 23;38(5):870-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 May 30;3(5):1355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jun 20;498(7454):380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23722158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jun;15(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Jul 25;51(2):226-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jul 26;341(6144):1236566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Aug 15;4(3):464-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 23;341(6148):903-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23929945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Sep 20;341(6152):1390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23989956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Nov;94(Pt 11):2367-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23999164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(10):e1003649</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 30;505(7485):691-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24284630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 2013;57(4):467-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24294965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):4366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Mar;452-453:175-190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24606695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Mar 20;10(3):e1004021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24651651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Apr 17;10(4):e1003989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 Jul;481:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25765002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25831530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2015 Sep;25(9):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 Aug 12;18(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26235147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2015 Oct;15(10):599-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 13;13(2):440-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26440888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jan 29;291(5):2389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26645692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):48-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2016 Apr;17(4):369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26829768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Feb 10;19(2):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Apr 14;90(9):4346-4356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 14;7:313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27014235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2016 May;17(5):514-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27043414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Jun;14(6):360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):283-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2016 Sep 25;193:22-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27599926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2016 Sep 20;17(10):1142-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27648547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Nov 30;7:13683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27901044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):746-751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 13;8:14392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28194029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 Jun 20;8(25):40533-40543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28465492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2017 Oct;591(19):3089-3103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28600802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 29;546(7660):651-655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28636603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Aug 30;13(8):e1006602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28854224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Sep 19;20(12):2944-2954</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28930687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2017 Nov 1;199(9):3293-3305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28947539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Nov 16;171(5):1110-1124.e18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29033128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Nov 2;171(4):809-823.e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2017 Dec 12;61(6):565-584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29233869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Feb 9;9(1):613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29426904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Apr 27;92(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29491158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2018;100:355-378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29551142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 May 1;23(5):1249-1258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29719242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Jun 14;9:1297</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29963044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Aug 17;361(6403):704-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29976794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 Aug 23;174(5):1143-1157.e17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30078703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Aug 29;9(1):3506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30158636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammation. 2019 Feb;42(1):6-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30194660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Dev Biol. 2018 Sep 25;6:122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30320109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2018 Oct 18;72(2):303-315.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30340022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2019 Mar;10(2):e1515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30381906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2018 Nov 10;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30423423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Nov 13;25(7):1953-1965.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30428360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Jan 17;73(2):325-338.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30527664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Jan;565(7737):101-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30568299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2019 Jan 15;50(1):51-63.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30635239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Feb;566(7743):259-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30728498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2019 Apr 23;27(4):1165-1175.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31018131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Oct 31-Nov 6;317(6040):813-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4058585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Feb;28(2):315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7060133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Mar;67(3):1688-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8094759</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Meade, Nathan" sort="Meade, Nathan" uniqKey="Meade N" first="Nathan" last="Meade">Nathan Meade</name>
</region>
<name sortKey="King, Melvin" sort="King, Melvin" uniqKey="King M" first="Melvin" last="King">Melvin King</name>
<name sortKey="Munger, Joshua" sort="Munger, Joshua" uniqKey="Munger J" first="Joshua" last="Munger">Joshua Munger</name>
<name sortKey="Walsh, Derek" sort="Walsh, Derek" uniqKey="Walsh D" first="Derek" last="Walsh">Derek Walsh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000175 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000175 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31118254
   |texte=   mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31118254" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020